Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing.

نویسندگان

  • Nicholas R Golledge
  • Christopher J Fogwill
  • Andrew N Mackintosh
  • Kevin M Buckley
چکیده

Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination

Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000-11,650 yrs ago) allows us to disentangle ice-climate feedbacks that are key to improving future projections. Whilst the sequence of events during this period is reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric...

متن کامل

The influence of Antarctic subglacial volcanism on the global iron cycle during the Last Glacial Maximum

Marine sediment records suggest that episodes of major atmospheric CO2 drawdown during the last glacial period were linked to iron (Fe) fertilization of subantarctic surface waters. The principal source of this Fe is thought to be dust transported from southern mid-latitude deserts. However, uncertainty exists over contributions to CO2 sequestration from complementary Fe sources, such as the An...

متن کامل

Modeling West Antarctic ice sheet growth and collapse through the past five million years

The West Antarctic ice sheet (WAIS), with ice volume equivalent to ~5 m of sea level,1 has long been considered capable of past and future catastrophic collapse.2, 3, 4 Today, the ice sheet is fringed by vulnerable floating ice shelves that buttress the fast flow of inland ice streams. Grounding lines are several hundred meters below sea level and the bed deepens upstream, raising the prospect ...

متن کامل

Obliquity Control On Southern Hemisphere Climate During The Last Glacial

Recent paleoclimate reconstructions have challenged the traditional view that Northern Hemisphere insolation and associated feedbacks drove synchronous global climate and ice-sheet volume during the last glacial cycle. Here we focus on the response of the Patagonian Ice Sheet, and demonstrate that its maximum expansion culminated at 28,400 ± 500 years before present (28.4 ± 0.5 ka), more than 5...

متن کامل

Sensitivity of the Atlantic Intertropical Convergence Zone to Last Glacial Maximum boundary conditions

[1] Recent paleoproxy records suggest that the mean latitude of the Atlantic Intertropical Convergence Zone (ITCZ) varied synchronously with North Atlantic climate over a range of timescales throughout the Holocene and Last Glacial Maximum. We show that the present-day ‘‘meridional mode’’ of atmosphere-ocean variability in the tropical Atlantic is a potentially useful model for understanding th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 40  شماره 

صفحات  -

تاریخ انتشار 2012